If it's not what You are looking for type in the equation solver your own equation and let us solve it.
^2-3Q^2-25Q+75=0
We add all the numbers together, and all the variables
-3Q^2-25Q=0
a = -3; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·(-3)·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$Q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*-3}=\frac{0}{-6} =0 $$Q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*-3}=\frac{50}{-6} =-8+1/3 $
| 3(n+3)=-4n+30 | | 3(q^2-3q)=0 | | 12(3y)=64 | | q2–7q+7=0 | | X=100-(.2x) | | (9+d)+10=210 | | h(50)=-8(50)^2+60(50) | | p2+9=–9p | | p^2+9=–9p | | x=25.00-0.09x | | x+57=137+x | | 4w(w+3)=16 | | 5w2+2=9w | | -2u=-4u2 | | -9=-3v2 | | 3x+5+5x-20=180 | | 5u2+4=0 | | 2(a=7)-7+9 | | 6y2+6y=0 | | 6w-2=-2 | | 3x+5=5x-20=180 | | y=15×+10 | | y2-5y+3=0 | | 4x-84-x+78=180 | | 4c(c+3)=-8 | | 4x²+25x+16=0 | | 10+34x=14x+13 | | 36=4•b | | 7y+2(y-4)=0 | | y2+y+1=0 | | 9y+2+2y+7=15y-15 | | 5(2x+1)(x+2)=0 |